Fusion Frames: Existence and Construction
نویسندگان
چکیده
Fusion frame theory is an emerging mathematical theory that provides a natural framework for performing hierarchical data processing. A fusion frame is a frame-like collection of subspaces in a Hilbert space, thereby generalizing the concept of a frame for signal representation. In this paper, we study the existence and construction of fusion frames. We first present a complete characterization of a special class of fusion frames, called Parseval fusion frames. The value of Parseval fusion frames is that the inverse fusion frame operator is equal to the identity and therefore signal reconstruction can be performed with minimal complexity. We then introduce two general methods – the spatial complement and the Naimark complement – for constructing a new fusion frame from a given fusion frame. We then establish existence conditions for fusion frames with desired properties. In particular, we address the following question: Given M,N,m ∈ N and {λj} M j=1, does there exist a fusion frame in R with N subspaces of dimension m for which {λj} M j=1 are the eigenvalues of the associated fusion frame operator? We address this problem by providing an algorithm which computes such a fusion frame for almost any collection of parameters M,N,m ∈ N and {λj} M j=1. Moreover, we show how this procedure can be applied, if subspaces are to be added to a given fusion frame to force it to become Parseval.
منابع مشابه
Construction of continuous $g$-frames and continuous fusion frames
A generalization of the known results in fusion frames and $g$-frames theory to continuous fusion frames which defined by M. H. Faroughi and R. Ahmadi, is presented in this study. Continuous resolution of the identity (CRI) is introduced, a new family of CRI is constructed, and a number of reconstruction formulas are obtained. Also, new results are given on the duality of continuous fusion fram...
متن کاملOptimally Sparse Fusion Frames: Existence and Construction
Fusion frame theory is an emerging mathematical theory that provides a natural framework for performing hierarchical data processing. In this paper, we introduce the notion of a sparse fusion frame, that is, a fusion frame whose subspaces are generated by orthonormal basis vectors that are sparse in a ‘uniform basis’ over all subspaces, thereby enabling low-complexity fusion frame decomposition...
متن کاملWoven fusion frames in Hilbert spaces and some of their properties
Extending and improving the concepts: woven frame and fusion frames, we introduce the notion of woven fusion frames in Hilbert spaces. We clarify our extension and generalization by some examples of woven frames and woven fusion frames. Also, we present some properties of woven fusion frames, especially we show that for given two woven frames of sequences, one can build woven fusion frames and ...
متن کاملContinuous $k$-Fusion Frames in Hilbert Spaces
The study of the c$k$-fusions frames shows that the emphasis on the measure spaces introduces a new idea, although some similar properties with the discrete case are raised. Moreover, due to the nature of measure spaces, we have to use new techniques for new results. Especially, the topic of the dual of frames which is important for frame applications, have been specified completely for the c...
متن کاملThe study on controlled g-frames and controlled fusion frames in Hilbert C*-modules
Controlled frames have been introduced to improve the numerical efficiency of iterative algorithms for inverting the frame operator on abstract Hilbert spaces. Fusion frames and g-frames generalize frames. Hilbert C*-modules form a wide category between Hilbert spaces and Banach spaces. Hilbert C*-modules are generalizations of Hilbert spaces by allowing the inner product to take values in a C*...
متن کامل